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We demonstrate that the magnetic field dependence of the conductivity measured at the transition tempera-
ture allows the dynamical critical exponent, the thickness of thin superconducting films and interfaces, and the
limiting lateral length to be determined. The resulting tool is applied to the conductivity data of an amorphous
Nb0.15Si0.85 film and a LaAlO3 /SrTiO3 interface.
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In a phase transition, sufficiently close to the transition
temperature Tc, critical fluctuations are expected to domi-
nate. The closer one gets to Tc, the longer these fluctuations
will last, and the larger the relevant length scale becomes. In
a superconductor the relevant length scale is the correlation
length �. Without loss of generality we can assume that the
lifetime of the fluctuations, �, varies as ���z which defines z,
the dynamical critical exponent.1,2 As we approach the criti-
cal region, all the physics that really matters is associated
with the diverging length and time scales.

Using experimentally accessible quantities, voltage V and
current I, dynamic scaling predicts for superconducting films
and interfaces the relationship1

V = I�−zg�� I�

T
� . �1�

g��x� is a scaling function of its argument above �+� and
below �−�Tc. Above Tc, in the limit x→0, g+�x� tends to a
constant and the conductivity to

� =
I

V
� �z. �2�

On the other hand, at Tc in the limit x→�, g��x� tends to xz

so that

V � Ia�Tc�, a�Tc� = z + 1. �3�

In practice I-V data exhibit resistive tails revealing finite-
size-induced free vortices which make it difficult to estimate
the transition temperature Tc and the dynamical scaling ex-
ponent z.3–7

Alternatively, the application of the conductivity relation
�2� requires the explicit form of the correlation length. Since
superconducting thin films and interfaces are expected to un-
dergo a Berezinskii-Kosterlitz-Thouless �BKT� transition
from the superconducting to the normal state the correlation
length adopts for T�Tc the characteristic form8,9

��T� = �0 exp� 2	

bt1/2�, t =
T

Tc
− 1. �4�

�0 is related to the vortex core radius and b to the energy
needed to create a vortex.10–13 Accordingly the analysis of
conductivity or resistivity data in zero magnetic field provide
in terms of ���z estimates for Tc, �0

z , and z /b �Refs. 14–17�
while the dynamical critical exponent z cannot be deter-

mined. Furthermore, the relationship ���z allows to perform
a standard finite-size scaling analysis.17,18

In this context it is important to recognize that the exis-
tence of the BKT transition �vortex-antivortex dissociation
instability� in 4He films is intimately connected with the fact
that the interaction energy between vortex pairs depends
logarithmic on the separation between them. As shown by
Pearl,19 vortex pairs in thin superconducting films �charged
superfluid� have a logarithmic interaction energy out to the
characteristic length 
2D=
2 /d, beyond which the interac-
tion energy falls off as 1 /r. Here 
 is the magnetic penetra-
tion depth of the bulk. As 
2D increases the diamagnetism of
the superconductor becomes less important and the vortices
in a thin superconducting film become progressively like
those in 4He films.20 According to this 
2D�min�W ,L� is
required, where W and L denote the width and the length of
the perfect sample. Invoking the Nelson-Kosterlitz relation21


2D�Tc�=
2�Tc� /d=�0
2 / �32	2kBTc� it is readily seen that for

sufficiently low Tc’s and min�W ,L�
1 cm this condition is
well satisfied. As a result any rounding of the transition due
to finite-size effects should be more important than that due
to the finite magnetic “screening length” 
2D.

Here we present a tool to determine the dynamical critical

exponent z, the thickness d, and the limiting length L̂, asso-
ciated with the resistive tail in zero magnetic field, from
conductivity measurements taken at Tc and in magnetic fields
applied parallel and perpendicular to the film or interface.
Traditionally the thickness of superconducting films is esti-
mated from the angular dependence of the upper critical field
Hc2.22 Noting that Hc2 is an artifact of the mean-field ap-
proximation this approach becomes questionable in two di-
mensions where thermal fluctuations are enhanced. The cru-
cial component of the tool stems from the magnetic field
induced finite-size effect. For T�Tc and nonzero magnetic
field the mean distance between the vortex lines ��0 /H�1/2 is
another characteristic length, preventing the correlation
length to diverge at Tc and H�0.23 The resulting magnetic
field induced finite-size effect can be described by relating
the zero-field and finite-field correlation length in terms of

�x�T,Hz��y�T,Hz� = �x�T,0��y�T,0�G�x� , �5�

where

x =
aHz�x�T,0��y�T,0�

�0
=

�x�T,0��y�T,0�
LHz

2 ,
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LHz

2 =
�0

aHz
. �6�

LHz
is the limiting magnetic length and G�x� denotes the

finite-size scaling function with the limiting behavior,

G�x� = � 1:x = 0

1/x:x → �
� . �7�

Indeed, in zero field the limiting magnetic length LHz
is infi-

nite and the growth of the correlation length � is unlimited
while in finite fields the divergence of � at Tc is removed and
its value is given by

�x�Tc,Hz��y�Tc,Hz� = LHz

2 =
�0

aHz
, �8�

where a fixes the mean distance between vortices. The
equivalence to the standard finite-size effect in a film of di-
mensions L�L is readily established by noting that in this
case the correlation length scales as ��T ,L�=��T ,L
=��G���T ,L=�� /L�.18

More generally in magnetic fields H�,	, applied perpen-
dicular �� � or parallel � 	 � to the film or interface, the diver-
gence of ��T� at Tc is then removed because ��Tc� cannot
grow beyond

L̃ =

L̂

LH�
= � �0

aH�

�1/2

LH	
= LH	

=
�0

aH	d
� . �9�

Here we included the limiting length L̂ arising from the
ohmic tail in zero field, e.g., due to the system size or the
finite lateral extent of the homogenous domains. The expres-
sions for the magnetic field induced limiting lengths LH�

and
LH	

follow from Eq. �8� and by noting that the correlation
lengths of fluctuations which are transverse to the applied
magnetic field are bounded according to �x�y ��0 / �aHx�, x
�y�z, where �z=d, H�=Hz, Hx=Hy =H	, and accordingly
�x�y =�	

2�LH�

2 =�0 /aH� and �x�z=�	d�LH	
d=�0 /aH	,

where d denotes the film thickness.
These limiting lengths prevent the divergence of the con-

ductivity at Tc. In zero field it adopts according to Eqs. �2�
and �9� the form

��Tc,H�,	 = 0� = fL̂z. �10�

As the magnetic field increases this behavior applies as long

as L̂�LH�,	
while for L̂�LH�,	

the magnetic field sets the
limiting length and the conductivity approaches according to
Eqs. �2� and �9� the form

��Tc,H�,	� = �n + � f�H�
−z/2, f� = f��0/a�z/2

f 	H	
−z, f 	 = f��0/ad�z � , �11�

where �n is the normal-state conductivity, attained in the
high-field limit. The thickness d of the superconducting film
or interface follows then from

d2 =
�0

a
� f�

f 	
�2/z

, �12�

whereby an estimation of d requires the value of the dynami-
cal critical exponent z, derivable from the magnetic field de-
pendence of the conductivity at Tc �Eq. �11��. So far we
concentrated on temperatures at and above the BKT transi-
tion. Below Tc the correlation length diverges, �→�.8,9 This
implies that � will be cut off by a limiting length and with
that are Eqs. �10� and �11� expected to apply for 0�T�Tc.
Since the low-temperature phase in the BKT scenario is de-
scribed by a line of fixed points, each temperature T�Tc
may be characterized by its own f�T�.

An essential assumption of the outlined approach is the
dominance of thermal phase fluctuations around Tc. There is
considerable evidence for a critical magnetic field H�,	c,
emerging from a nearly temperature-independent crossing
point in the resistance-magnetic field plane.24–31 It can be
identified as the critical field of the quantum superconductor
to insulator �QSI� transition and the resistance is predicted to
scale as R�H�,	 ,T�=Rcf��H�,	 −H�,	c� /T1/z̄�̄�,32 where �̄ is the
zero-temperature correlation length exponent and z̄ is the
quantum dynamical critical exponent. However, recent
experiments30,33 that have explored the competition between
thermal and quantum fluctuations at low enough tempera-
tures revealed that a temperature-independent critical field
occurs at low temperatures only, where quantum fluctuations
are no longer negligible.

To illustrate this tool, allowing z, d, and L̂ to be deter-
mined from the magnetic field dependence of the conductiv-
ity at Tc we analyze next the data of Aubin et al.30 of an
amorphous 125-Å-thick Nb0.15Si0.85 film. In Fig. 1�a� we de-
picted the temperature dependence of the sheet resistance in
zero field to estimate Tc and to uncover a rounded transition
attributable to a finite-size effect. Evidence for characteristic
BKT behavior emerges from the inset showing
�d ln�R� /dT�−2/3 vs T in terms of the consistency with
�d ln�R� /dT�−2/3= �2 /bR�2/3�T−Tc� in an intermediate tem-
perature regime above Tc. The resulting estimates for bR and
Tc are then used to obtain the BKT resistance, R=R0 exp�
−bR / �T−Tc�1/2�, by adjusting R0 in this intermediate regime
�0.23�T�0.34 K�. The comparison between the resulting
solid BKT line and the data reveals a rounded transition and
with that a finite-size effect generating free vortices at and
below Tc=0.224 K. In this context we note that according to
the Harris criterion weak randomness in the local Tc, pairing
interaction, etc., does not change the critical BKT behavior.34

Nevertheless, inhomogeneities due to local strain or a heat
current appear to be likely in both, superconducting films
and interfaces. A nonzero heat current drives the system
away from equilibrium. A temperature gradient is created
which implies that the temperature is space dependent.

To substantiate and complete the consistency with limited
BKT behavior in zero field we perform a finite-size scaling

analysis.17,18 Supposing that there is a limiting length L̂ pre-

venting the correlation length to grow beyond L̂ finite-size

scaling implies that R�T , L̂� scales as
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R�T,L̂�

R�T,L̂ = ��
= 
 ��T,0�

��T,L̂ = ��
�2

= g�x� , �13�

where

x =
1

R�T,L̂ = ��L̂2
� 
 ��T,L̂� = �

L̂
�2

. �14�

g�x� is the finite-size scaling function adopting in the present
case the limiting behavior,

g�x� =� 1:��T,�� 
 L̂

gx:��T,�� � L̂
� . �15�

BKT behavior, R�T , L̂�=R�T , L̂=��, is then observable as

long as ��T ,��� L̂ while for ��T ,��� L̂ the scaling function
approaches

R�T,L̂� = g�L̂� = g/L̂2. �16�

A glance at Fig. 1�b� reveals that the zero-field data shown in
Fig. 1�a� are fully consistent with BKT critical behavior in a

finite system of lateral extent L̂. In particular, the tail below
Tc�0.224 K was traced back to a finite-size effect. Further-
more, above Tc and for asymptotically small fields the mag-
netic susceptibility ��=m�T ,H�� /H�=−�2�kBT / �2d�0

2��
�Ref. 35� and the conductivity, ��T ,H�=0���z�T ,H�=0�
�Eq. �2�� are related by

�� � −
kBT

2d�0
2�2/z�T,H� = 0� . �17�

Accordingly, the occurrence of finite-size-limited BKT be-
havior can also be inferred from the magnetic susceptibility
and the conductivity. In Fig. 2 we depicted T��T ,H�� vs T
derived from the data of Aubin et al.30 in the field and tem-
perature range where Eq. �17� is expected to apply. The solid
line is the characteristic BKT behavior in terms of
T��T ,H�=0� vs T resulting from the finite-size scaling
analysis. As expected, pronounced deviations occur close to
Tc�0.224 K, where � is prevented to diverge due to the

limiting lengths L̂ or LH�
= ��0 / �aH���1/2 �Eq. �9��. Never-

theless, in the temperature regime �0.23�T�0.35 K�,
where the magnetic field induced finite-size sets the limiting
length LH�

the data flows with reduced H� to the character-
istic zero-field BKT behavior because LH�

increases. On the
contrary, at Tc and H�=0, where LH�

is infinite the data
clearly uncovers that the divergence of � is eliminated by the

limiting length L̂. Invoking the detailed finite-size scaling

(b)

(a)

FIG. 1. �Color online� �a� R��T� of an amorphous 125-Å-thick
Nb0.15Si0.85 film taken from Aubin et al. �Ref. 30�. The solid line is
R=R0 exp�−bR / �T−Tc�1/2� with R0=1.41 k�, bR=0.0403 K1/2,
and Tc=0.224 K. The inset shows �d ln�R� /dT�−2/3 vs T and
the dashed line is �d ln�R� /dT�−2/3= �2 /bR�2/3�T−Tc�.
�b� R�T , L̂� /R�T ,L=�� vs 1 /R�T , L̂=��, where R�T , L̂=��
=R0 exp�−bR / �T−Tc�1/2� and R�T , L̂� denotes the experimental data.
The upper branch corresponds to T�Tc and the lower one to
T�Tc. The dashed line is R�T ,L��R�T ,�� and the solid one

R�T , L̂�=g�L̂�=g / L̂2 with g�L̂��800.

FIG. 2. �Color online� T��T ,H�� vs T for various H� for an
amorphous 125 Å thick Nb0.15Si0.85 film derived from Aubin et al.
�Ref. 30�. The solid line is T��T ,H��=T /R= �1 /R0�exp�bR / �T
−Tc�1/2� with R0=1.41 k�, bR=0.0403 K1/2, and Tc=0.224 K.
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analysis of the zero-field resistance and the low-field depen-
dence of the conductivity we identified an intermediate tem-
perature regime uncovering consistency with the characteris-
tic BKT behavior in the intermediate temperature regime
0.23�T�0.34 K above Tc�0.224 K. In addition, we de-

tected the limiting lateral length L̂, preventing the divergence
of the correlation length by approaching Tc. Nevertheless,
the outlined finite-size analysis allowed to estimate Tc of the
fictitious infinite and homogeneous system reliably. The veri-
fication of BKT behavior also implies that in this tempera-
ture regime the phase fluctuations of the order parameter
dominate and the expectation value of the absolute value of
the order-parameter squared remains finite.

In this context it is important to note that the adopted
BKT scenario requires that the temperature window Tc0−Tc,
where Tc0 denotes the BCS mean-field transition tempera-
ture, is sufficiently large. Tc0 can be estimated from the con-
tribution of Gaussian fluctuations to the sheet conductance,
�=�n+ �̃0 / �T /Tc0−1�, where �n is the normal-state sheet
conductivity and �̃0=	e2 /8h�1.52�10−5 �−1.36 A fit of
this equation to the resistance data between 0.28 and 3 K,
partially shown in Fig. 1�a�, yields Rn�1.315 k� and Tc0
�0.3 K compared to Tc�0.224 K. Accordingly, fluctuation
effects should be observable below Tc0�0.3 K, in agree-
ment with Fig. 1. In order to attribute the shift Tc /Tc0
�0.75 to BKT fluctuations it remains to be shown that the
shift due to Gaussian fluctuations, �Tcg−Tc0� /Tc0
=2Gi ln�4Gi�,37 is considerably smaller. Tcg is the transition
temperature, renormalized with respect to Gaussian fluctua-
tions and Gi��e2 /23��Rn is the Ginzburg-Levanyuk param-
eter for a dirty film. Using Rn�1.315 k� we obtain Gi
�0.014 and with that Tcg /Tc0�0.92, revealing that Gaussian
fluctuations cannot account for the observed finite-size-
limited critical behavior emerging from Fig. 1. As the tool
relies on a reliable estimate of Tc it applies to sufficiently
homogeneous films with a limiting length such that the BKT
critical regime is accessible. On the other hand, an analysis
based on the Gaussian approximation provides an estimate
for Rn and with Gi�Rn a measure for the strength of fluc-
tuations.

Next we turn to a detailed analysis of the effects of an
applied magnetic field, inducing additional free vortices. In
Fig. 3 we show the sheet conductivity ���Tc� vs H� derived
from the resistivity data. Above H�

� =1.75 kOe we observe
for

z � 2 �18�

consistency with ��Tc ,H��=�n+ f�H�
−z/2 �Eq. �11�� and

therewith evidence for diffusive dynamics.1 In the low-field
limit deviations from Eq. �11� are expected because for suf-
ficiently low H� the magnetic length LH�

= ��0 /aH��1/2 is

no longer large compared to L̂, the zero-field limiting length.
According to Fig. 4, depicting ���Tc� vs H	 of the same

sample, agreement with ��Tc ,H	�=�n+ f 	H	
−z �Eq. �11�� is

obtained above H	
�=6 kOe for z�2. So this value is consis-

tent with both the perpendicular and parallel magnetic field
dependence. Given then the evidence for z=2 and the esti-

mates for f� and f 	 we obtain with the nominal thickness of
the film, d�125 Å �Ref. 30� and Eq. �12� for a, fixing the
mean distance between vortices, the estimate

a � 4.8 �19�

compared to a�3.12, found in bulk cuprate
superconductors.23 Note that the film thickness was moni-
tored in situ during the evaporation by a set of piezoelectric
quartz. Moreover, the thicknesses and compositions were
checked ex situ by Rutherford backscattering. The accuracy
is estimated to be �5%.38 In analogy to the behavior in the
perpendicular field deviations from Eq. �11� occur with re-
duced field strength. They set in around H	

�=6 kOe, where

LH	
� =�0 / �adH	

�� is no longer large as compared to L̂. To

estimate L̂ we note that Eqs. �10� and �11� imply that at H	
•

and H�
• �see Figs. 2 and 3� the relation

FIG. 3. �Color online� ���Tc� vs H� for an amorphous
125-Å-thick Nb0.15Si0.85 film and T�0.224 K�Tc derived from
Aubin et al. �Ref. 30�. The solid line is Eq. �11� with
�n=0.70 k�−1 and f�=0.29 k�−1 kOe. The arrow marks
H�

� =1.75 kOe and the dot H�
• =0.59 kOe.

FIG. 4. �Color online� ���Tc� vs H	 for an amorphous
125-Å-thick Nb0.15Si0.85 film and T=0.224 K�Tc derived from
Aubin et al. �Ref. 30�. The solid line is Eq. �11� with
�n=0.71 k�−1 and f 	 =8 k�−1 kOe2. The arrow marks
H	

�=6 kOe and the dot H	
•=3.85 kOe.
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L̂ =
�0

adH	
• = � �0

aH�
• �1/2

�20�

holds. With H�
• =0.59 kOe and a�4.8 we obtain L̂

�855 Å while H	
•=3.85 kOe and d=125 Å yields L̂

�896 Å, compared to the lateral dimensions W�L
=0.28 cm�0.15 cm of the film.38 Invoking the Kosterlitz-
Nelson relation 
2D�Tc�=
2�Tc� /d=�0

2 / �32	2kBTc� we ob-
tain 
2D�Tc��4.4 cm for Tc=0.224 K, whereupon 
2D
�min�W ,L� is well satisfied for this film. Because 
2D�Tc� is

also large compared to L̂, the zero-field limiting length ap-
pears to be set by the lateral extent of the homogenous do-
mains. In any case, the uncovered limiting length implies the
presence of free vortices below Tc, precluding a true phase
transition. Accordingly, the rounded BKT transition seen in
Fig. 1 is traced back to a limiting length not attributable to
the finite magnetic screening length 
2D.

As aforementioned, below Tc the correlation length
diverges.8,9 Correspondingly, �→� will be cut off by a lim-
iting length and Eqs. �10� and �11� are expected to apply for
T�Tc. Since the low-temperature phase in the BKT scenario
is described by a line of fixed points, each temperature T
�Tc may be characterized by its own f�T�. To clarify this
conjecture we invoke Eq. �11� in the form H���T ,H��
=H��n+ f��T� with z=2. The data should then fall on
straight lines with slope �n and intercepts f��T�. In Fig. 5,
depicting H����T� vs H� for temperatures at and below Tc,
we observe that above H�

� =1.75 kOe �see Fig. 3�, where the
magnetic field sets the limiting length, the data falls on a
single line while below H�

� a crossover to the zero-field limit

behavior, ��Tc ,H�=0�= f�T�L̂z �Eq. �10�� sets in. Indeed,
around H�

� the magnetic limiting length LH�
becomes com-

parable to L̂. From the inset, showing ���T� vs H�, it is seen
that in zero field f�T� increases with reduced temperature,
reflecting that by lowering the temperature the density of the

finite-size-induced vortices is reduced and with that the con-
ductivity increases. Thus, as conjectured, f�T� in Eq. �10�
depends on temperature. The agreement with Eq. �11�, taking
thermal fluctuations into account only, also reveals that
around Tc the contribution of quantum fluctuations is negli-
gibly small, although a nearly temperature-independent
crossing point in the resistance-magnetic field plane occurs
around H��5.5 kOe.30

The inset of Fig. 5 also reveals that ���T� vs H� exhibits
in the low-field limit a strong temperature dependence,
weakening at higher fields. Noting that ���T� vs H	 behaves
in the same manner and the low-field behavior at Tc enters

the determination of the limiting length L̂ �see Figs. 3 and 4�,
a reliable estimation of L̂ requires a good value of Tc. On the
contrary, the parameters f� and f 	 �Eq. �11��, determining the
dynamical critical exponent z and the thickness d, do not
vary much around Tc because there values are fixed in terms
of the weakly temperature-dependent conductivities at higher
magnetic fields.

To illustrate this tool further, allowing to determine z, d,

and L̂ from the magnetic field dependence of the conductiv-
ity at Tc we analyze the conductivity data of Reyren et al.16

for a superconducting LaAlO3 /SrTiO3 interface with Tc
�0.21 K. In Fig. 6 we show the sheet conductivity ���Tc�
vs H� derived from the resistivity data. Above �0H�

�10 mT we observe consistency with Eq. �11� for z�2, in
agreement with the value derived from I-V data,14 and pre-
dicted for diffusive dynamics.1 According to Fig. 7 and Eq.
�11� z�2 also follows from ��Tc� vs H	 above �0H	

�300 mT. Given then the evidence for z=2 and the esti-
mates for f� and f 	 we obtain with Eqs. �12� and �19� for the
thickness of the superconducting interface the value

d � 67 Å �21�

in agreement with previous estimates where z=2 was
assumed.16 Recently, room-temperature studies have also
been performed to estimate the thickness of the
LaAlO3 /SrTiO3 interface grown at “high” oxygen pressures
leading to a value of 70,39 100,40 and 120 Å at 8 K.41

FIG. 5. �Color online� H����T� vs H� for an amorphous
125-Å-thick Nb0.15Si0.85 film at T=0.224 K�Tc, T=0.201 K, and
T=0.181 K derived from Aubin et al. �Ref. 30� The solid line is
Eq. �11� in terms of H���Tc ,H��=�nH�+ f� with z=2, �n

=0.70 k�−1, and f�=0.29 k�−1 kOe. The inset shows ���T� vs
H�. The dashed line is Eq. �11� with �n=0.70 k�−1 and f�

=0.29 k�−1 kOe.

FIG. 6. �Color online� ���Tc� vs H� for a LaAlO3 /SrTiO3 in-
terface with Tc�0.21 K derived from Reyren et al. �Ref. 16�. The
solid line is Eq. �11� with �n=1.94�10−3 � and f�=1.59
�10−2 � mT. The dot marks �0H�

• =3.8 mT.
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Furthermore, in analogy to the amorphous Nb0.15Si0.85
film �see Figs. 3 and 4� ���Tc� vs H�,	 does not diverge in
the zero-field limit. This behavior was traced back to a stan-
dard finite-size effect, presumably attributable to a finite lat-

eral extent L̂ of the homogeneous domains.17 To substantiate
this interpretation we invoke Eq. �20� and the respective es-
timates for H�

• and H	
•, yielding with a=4.8 and d�67 Å,

L̂�3.4�10−5 cm��0H�
• =3.8 mT� and L̂�4.9

�10−5 cm��0H	
•=195 mT�, compared to the lateral dimen-

sions W�L=0.02 cm�0.01 cm of the superconducting in-
terface. Invoking the Nelson-Kosterlitz relation 
2D�Tc�
=
2�Tc� /d=�0

2 / �32	2kBTc�,21 we obtain 
2D�Tc��4.8 cm
for Tc=0.21 K, whereupon 
2D�min�W ,L� is well satisfied
for the LaAlO3 /SrTiO3 interface. Furthermore, because


2D�Tc� is also large compared to L̂, the zero-field limiting
length appears to be set by the lateral extent of the homog-
enous domains. In any case due to the uncovered limiting
length, not attributable a finite magnetic screening length

2D, it becomes possible for free vortices to form below Tc

which in turn precludes a true phase transition.
In summary, we presented and illustrated a simple prom-

ising tool to extract from the magnetic field dependence of
the conductivity at Tc the dynamical critical exponent z, the
thickness d of thin superconducting films and interfaces, and

the limiting length L̂, giving rise to rounded BKT and QSI
transitions even in zero field. In fact, in the quantum case is
the divergence of the zero-temperature correlation length

��T=0�= �̄0�−�̄ prevented because it cannot beyond L̂ and
with that is the attainable tuning regime bounded by

�� ��̄0 / L̂�1/�.
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